Algebraic curves over F2 with many rational points
نویسنده
چکیده
A smooth, projective, absolutely irreducible curve of genus 19 over F2 admitting an infinite S-class field tower is presented. Here S is a set of four F2-rational points on the curve. This is shown to imply that A(2) = limsup#X(F2)/g(X) ≥ 4/(19 − 1) ≈ 0.222. Here the limit is taken over curves X over F2 of genus g(X)→∞.
منابع مشابه
On the maximum number of rational points on singular curves over finite fields
We give a construction of singular curves with many rational points over finite fields. This construction enables us to prove some results on the maximum number of rational points on an absolutely irreducible projective algebraic curve defined over Fq of geometric genus g and arithmetic genus π.
متن کاملYet More Projective Curves over F2
All plane curves of degree less than 7 with coefficients in F2 are examined for curves with a large number of Fq rational points on their smooth model, for q = 2,m = 3, 4, ..., 11. Known lower bounds are improved, and new curves are found meeting or close to Serre’s, Lauter’s, and Ihara’s upper bounds for the maximal number of Fq rational points on a curve of genus g.
متن کاملK3 Surfaces, Rational Curves, and Rational Points
We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...
متن کاملK3 Surfaces, Rational Curves, and Rational Points
We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...
متن کاملUsing Quadratic Forms to find Curves with Many Points
In both algebraic geometry and coding theory, there is a great deal of interest in finding curves with many rational points. In particular, the correspondence between trace codes and Artin-Schreier curves gives a relation between the weights of codewords and the number of rational points on such curves, low weight codewords yielding curves with a large number of rational points. Further, subcod...
متن کامل